IgG testing, immunoglobulin replacement therapy, and infection outcomes in patients with CLL or NHL: real-world evidence

Blood Advances, 2024

Patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL) can develop hypogammaglobulinemia, a form of secondary immune deficiency (SID), from the disease and treatments. Patients with hypogammaglobulinemia with recurrent infections may benefit from immunoglobulin replacement therapy (IgRT). This study evaluated patterns of immunoglobulin G (IgG) testing and the effectiveness of IgRT in real-world patients with CLL or NHL. A retrospective, longitudinal study was conducted among adult patients diagnosed with CLL or NHL. Clinical data from the Massachusetts General Brigham Research Patient Data Registry were used. IgG testing, infections, and antimicrobial use were compared before vs 3, 6, and 12 months after IgRT initiation. Generalized estimating equation logistic regression models were used to estimate odds ratios, 95% confidence intervals, and P values. The study population included 17 192 patients (CLL: n = 3960; median age, 68 years; NHL: n = 13 232; median age, 64 years). In the CLL and NHL cohorts, 67% and 51.2% had IgG testing, and 6.5% and 4.7% received IgRT, respectively. After IgRT initiation, the proportion of patients with hypogammaglobulinemia, the odds of infections or severe infections, and associated antimicrobial use, decreased significantly. Increased frequency of IgG testing was associated with a significantly lower likelihood of severe infection. In conclusion, in real-world patients with CLL or NHL, IgRT was associated with significant reductions in hypogammaglobulinemia, infections, severe infections, and associated antimicrobials. Optimizing IgG testing and IgRT are warranted for the comprehensive management of SID in patients with CLL or NHL.

View abstract

Authors

Soumerai JD, Yousif Z, Gift T, Desai R, Huynh L, Ye M, Banatwala A, Clear L, Pinaire M, Belsky G, Grace Hsieh YG, Herrick C, Darnell EP, Duh MS, Sanchirico M, Murphy SN